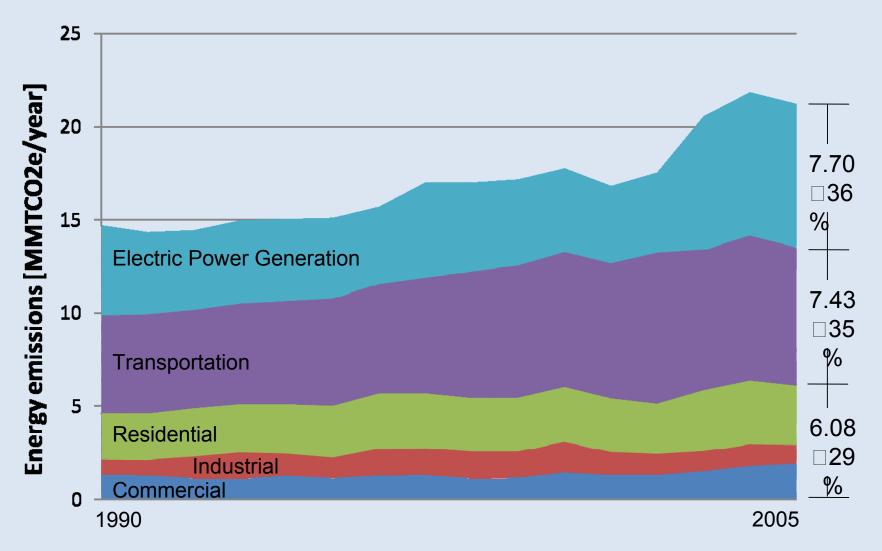


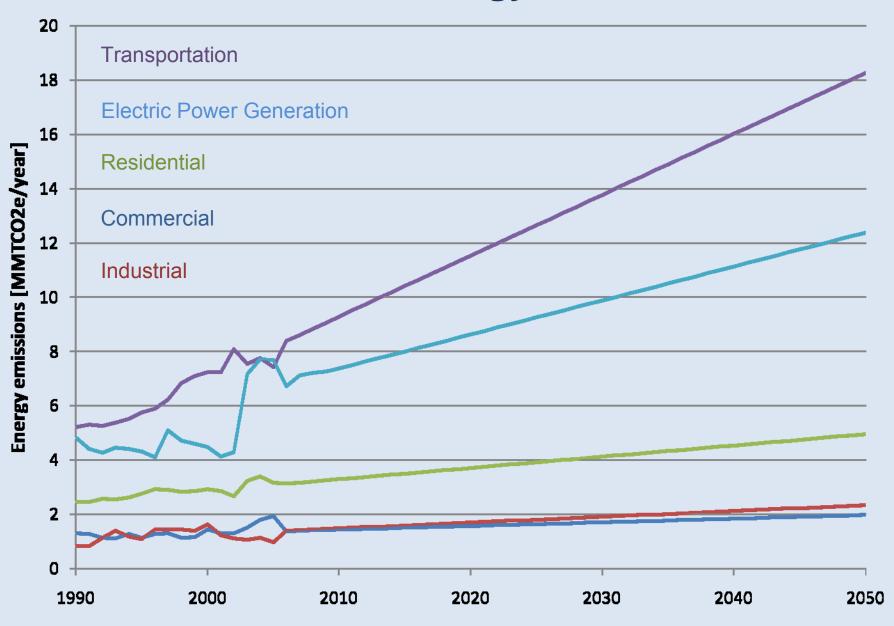
Technical Work Group Status Report

New Hampshire Climate Change Policy Task Force


Third Task Force Meeting May 19, 2008

Dr. George Hurtt Matt Frades Matt Magnusson

Technical Consultant Charge:


- The CSNE technical consultant team will serve as a neutral and expert group to inform and support the development of technical and policy consensus
- The Technical Consultants' primary function is to provide technical support to the Task Force and Working Groups, including quantitative analysis of options and alternative policy designs.

Historical NH Energy Emissions

Total = 21.21

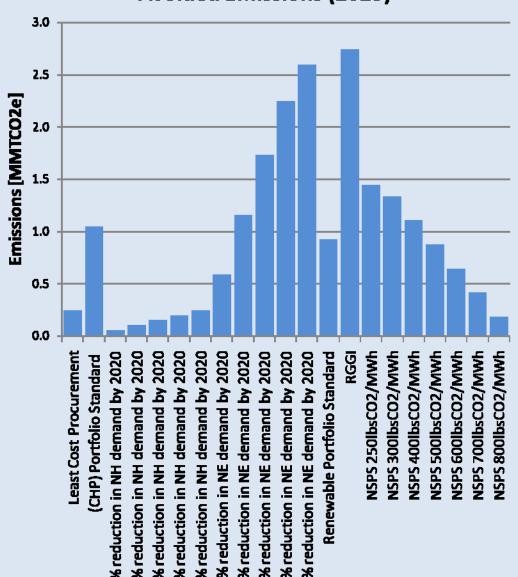
Historical NH Energy Emissions

Data Sources: EPA, Energy CO₂ Emissions by

Electricity Generation and Usage

Model:

-Based on projection of future generation (MWh) and fuel mix


• BAU:

- Maintain current NH generation base
- Linear projection of NE generation growth, NH maintains 17.3% share
- New generation from natural gas

Analyses:

- Phased in shifts in fuel mix
- Changes in new generation growth rate and fuel mix

Avoided Emissions (2025)

(Total emissions in 2025: 9.26)

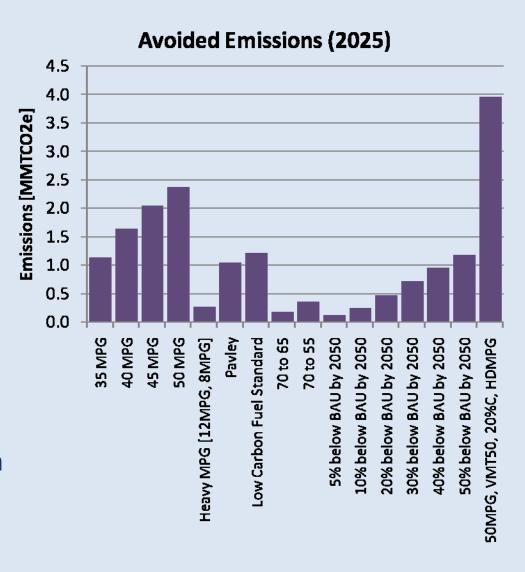
Transportation and Land Use

• Model:

Light Duty fleet:

- Cars / trucks
- Vehicle age
- Sales rate / retirement rate
- Vehicle miles travelled
- Fuel efficiency
- Fuel carbon intensity

Heavy Duty fleet:


- Single unit / combination
- Miles travelled
- Fuel efficiency

• BAU:

-Projections on current trends in above variables

Analyses:

- Changes in efficiency, fuel carbon content, and VMT

(Total emissions in 2025: 12.66)

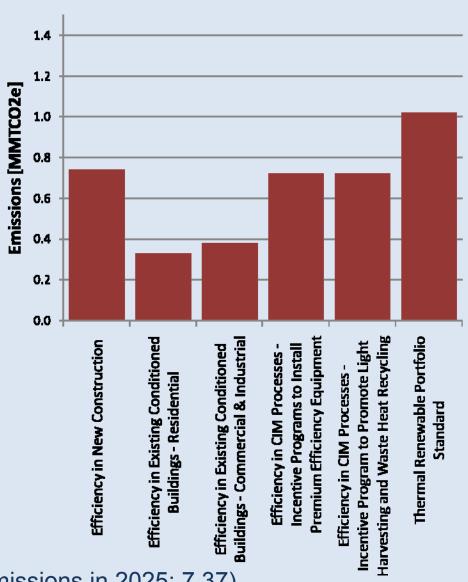
Residential, Commercial, Industrial

Avoided Non-Electric Emissions (2025)

• Model:

- Based on energy intensity (per capita / per sq ft) and NH population and floorspace growth

Apply a fuel mix to meet this energy demand


• BAU:

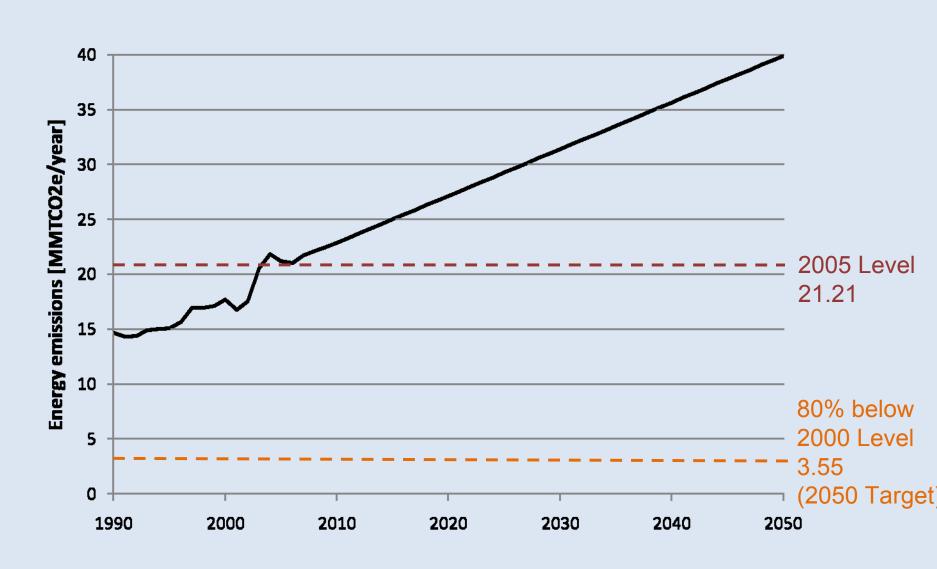
- Maintain current energy intensity and fuel mix and apply to growing population and floorspace

• Analyses:

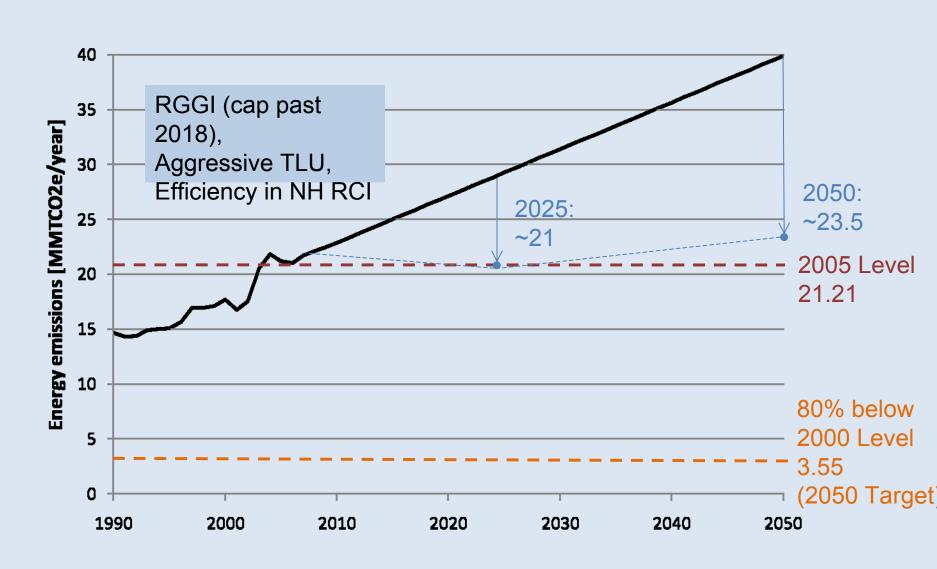
 Apply phased-in changes in energy intensity to new, renovated old buildings

- Change fuel mix

(Total emissions in 2025: 7.37)


Agriculture, Forestry, and Waste

Sustainable Wood for


Energy

Energ	y								
				Current Average Heat Rate (12,687 BTU/kWh)			Theoretical Efficienct Heat Rate (9,000 BTU/kWh)		
		ſ	Biomass	Electricity Generation	Percent of Total NH Generation	CO2 Offset	Electricity Generation	Percent of Total NH Generation	CO2 Offset
		Ī	BBTUs	(MIVh)		(MMTCO2e)			(MMTCO2e)
Increment + Harvest			55449	4,370,267	20.2%	1.74	6,161,000	28.5%	2.45
	Less Harvest		28845						
Unharvested			26604	2,096,820	9.7%	0.84	2,956,000	13.7%	1.18
	Less Restricted	50%	13302						
Available Unharvested			13302	1,048,410	49%	0.42	1,478,000	6.8%	0.59
A 3 355 1	-								
Additional Number of 50MIV IVood									
Plants					2.5			3.5	

Preliminary Combination of Actions: Perspective on Overall Reductions

Preliminary Combination of Actions: Perspective on Overall Reductions

Preliminary Combination of Actions: Perspective on Overall Reductions

- I. Strategies have been identified and quantified wherein existing technologies could be implemented to substantially reduce future carbon emissions from NH.
- II. Estimates of avoided future emissions are preliminary and based on a rapid analysis of the best available information.
- III. Aggressive strategies in each of these sectors could avoid ~8.25 MMTCO₂e emissions by 2025 and offset projected future growth.
- IV. These same strategies applied regionally might have a larger impact on region emissions since NH has among the fastest growth rates, and the cuts here go largely to offsetting future growth.
- V. Given projected growth rates additional strategies will be needed for the state to substantially reduce emissions below current levels.

Economic Analysis Overview

- UNH Economic team consists of Professor Ross Gittell and Matt Magnusson, MBA
 - Previous related research include:
 - Economic Impact Analysis of a Renewable Portfolio Standard on NH (2006)
 - Economic Impact Analysis of the Regional Greenhouse Gas Initative on NH (2008)
- For this project we seek to assist and inform the task force by:
 - Providing a broad assessment of the direct costs and benefits of various policies proposed by the working groups
 - Providing expected statewide economic impacts (e.g. Employment, Gross State Product)

Methodology Overview

- Research the policies proposed by the working groups to find economic metrics (cost of implementation, savings expectations) from credible sources (e.g. EPA, EIA)
- Document assumptions that are being used in the economic analysis
- Integrate the economic spreadsheet modeling with the output of the carbon spreadsheet modeling performed by the carbon analysis team.
 - Economic analysis driven by the demand forecasts developed by the carbon team
 - Economic team developed energy price forecast through 2050 based on:
 - EIA Annual Energy Outlook for 2008 for all fuels but not electricity
 - ISO New England 2008 forecast for NH specific electricity prices
- Statewide economic impacts will be modeled using spreadsheet analysis and our knowledge of the NH economy and may include more sophisticated economic software tools such as REMI (Regional

Electricity Generation & Usage

- Economic analysis of direct costs and benefits have been completed for policies proposed by the EGU working group
 - Direct Costs: Capital and operating costs to implement technologies
 - Direct Benefits: Savings to NH ratepayer costs
- The policies analyzed focused on:
 - Increased use of Energy Efficiency and Demand Reduction
 - Increased generation from Combined Heat and Power
 - Carbon sequestration for new generation
- Key findings include:
 - Investment in Energy Efficiency (depending on the policy) could result in up to \$150 million in new investment annually by 2050 and annual savings of \$700 million to NH ratepayers
 - Combined Heat & Power policies could to \$200 million in new investment annually by 2050 and annual savings of \$500 million to NH ratepayers

Transportation and Land Use

- Economic analysis of direct benefits have been completed for policies proposed by the TLU working group
 - Direct Costs: (Looking for further feedback from TLU on implementation costs)
 - Direct Benefits: Savings due to avoided fuel costs
- Key findings include:
 - More stringent CAFE (Fuel Economy) standards could save NH drivers up to \$1.2 billion annually by 2050 in avoided fuel costs
 - Reducing highway speed could save \$150 million in fuel costs by 2050
 - Reducing VMT (Vehicle Miles Traveled) by 50% could save \$1.3 billion annually by 2050

Residential, Commercial, Industrial

- Economic analysis still in progress for policies proposed by the RCI working group
 - Direct Costs: (Looking for further feedback from RCI on implementation costs) based on additional cost per square foot per policy
 - Direct Benefits: Savings due to avoided fuel costs based on per square foot
- Current status
 - Linking economic modeling with carbon modeling demand forecasts based on square footage per sector
 - Developing cost/benefit curve for energy efficiency in buildings.
 Research indicates a non-linear curve.

Agriculture, Forestry, and Waste

- Economic analysis has not begun for this group
 - Direct Costs: (Looking for further feedback from AFW on implementation costs)
 - Direct Benefits: (Looking for further feedback from AFW on implementation costs)
- Current status
 - Not enough information to guide economic analysis

Next Steps

- Actively looking for further feedback (specifically for cost/benefit data) from working groups to assist with completing analysis of direct costs and benefits from proposed policies
- Upon completion of the analysis of direct costs and benefits for the policies that can be analyzed, the economic team will provide broader economic impacts for these policies
- Economic team is also performing related research to develop detailed estimates of energy efficiency potential for NH and a more detailed supply/demand curve for renewable energy for NH that can be used to refine the economic analysis performed for the EGU and RCI policies